Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 12: 712722, 2021.
Article in English | MEDLINE | ID: covidwho-1394761

ABSTRACT

The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.


Subject(s)
CRISPR-Cas Systems , Gene Editing , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Disease Resistance , Disease Susceptibility , Epigenesis, Genetic , Gene Editing/methods , Genetic Therapy , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Ligands , Neoplasms/etiology , Protein Binding , Virus Diseases/etiology
2.
J Proteome Res ; 20(5): 2796-2811, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1387127

ABSTRACT

We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer's ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Kynurenine , Amines , Cytokines , Humans , SARS-CoV-2
3.
J Proteome Res ; 20(2): 1382-1396, 2021 02 05.
Article in English | MEDLINE | ID: covidwho-1019738

ABSTRACT

To investigate the systemic metabolic effects of SARS-CoV-2 infection, we analyzed 1H NMR spectroscopic data on human blood plasma and co-modeled with multiple plasma cytokines and chemokines (measured in parallel). Thus, 600 MHz 1H solvent-suppressed single-pulse, spin-echo, and 2D J-resolved spectra were collected on plasma recorded from SARS-CoV-2 rRT-PCR-positive patients (n = 15, with multiple sampling timepoints) and age-matched healthy controls (n = 34, confirmed rRT-PCR negative), together with patients with COVID-19/influenza-like clinical symptoms who tested SARS-CoV-2 negative (n = 35). We compared the single-pulse NMR spectral data with in vitro diagnostic research (IVDr) information on quantitative lipoprotein profiles (112 parameters) extracted from the raw 1D NMR data. All NMR methods gave highly significant discrimination of SARS-CoV-2 positive patients from controls and SARS-CoV-2 negative patients with individual NMR methods, giving different diagnostic information windows on disease-induced phenoconversion. Longitudinal trajectory analysis in selected patients indicated that metabolic recovery was incomplete in individuals without detectable virus in the recovery phase. We observed four plasma cytokine clusters that expressed complex differential statistical relationships with multiple lipoproteins and metabolites. These included the following: cluster 1, comprising MIP-1ß, SDF-1α, IL-22, and IL-1α, which correlated with multiple increased LDL and VLDL subfractions; cluster 2, including IL-10 and IL-17A, which was only weakly linked to the lipoprotein profile; cluster 3, which included IL-8 and MCP-1 and were inversely correlated with multiple lipoproteins. IL-18, IL-6, and IFN-γ together with IP-10 and RANTES exhibited strong positive correlations with LDL1-4 subfractions and negative correlations with multiple HDL subfractions. Collectively, these data show a distinct pattern indicative of a multilevel cellular immune response to SARS CoV-2 infection interacting with the plasma lipoproteome giving a strong and characteristic immunometabolic phenotype of the disease. We observed that some patients in the respiratory recovery phase and testing virus-free were still metabolically highly abnormal, which indicates a new role for these technologies in assessing full systemic recovery.


Subject(s)
COVID-19/diagnosis , Chemokines/metabolism , Cytokines/metabolism , Lipoproteins/metabolism , Magnetic Resonance Spectroscopy/methods , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/blood , COVID-19/virology , Chemokines/blood , Cytokines/blood , Female , Host-Pathogen Interactions , Humans , Lipoproteins/blood , Male , Metabolomics/methods , Middle Aged , Proteomics/methods , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL